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Tliis special issue of Futures Research Quarterly is on the sub-
ject of "Complex Adaptive Systems and Futures Thinking: Theories,
Applications, and Methods." The articles cover a wide range of top-
ics from theories and models of complex, adaptive systems (CAS) to
applications of complex adaptive systems models and thinking in
different areas (including from macro system levels to micro system
levels, from interrelated factors driving change of systems in our
outer world, the inner world of the psyche and consciousness, and/or
their interrelationships, as well as different methods for dealing with
complexity of systems and life in the 21^' century).

Though systems thinking and futures thinking are separate disci-
plines, there is a natural overlap between them, which all these arti-
cles explore. While some futurists look at change only within a spe-
cialized area, most futurists are big picture thinkers, making them
also inherently dynamic, interdependent, complex, whole systems
thinkers as well. Like complex adaptive systems (CAS) thinking,
futurists have always had a model of reality that looks at the interre-
lationships between different variables, as these interact and change
witliin a whole systems context over time. The overall evolution of
different systems over time—including periods of slower change, as
well as periods of faster change and evolution, and perhaps of crisis,
disruption, and discontinuity, leading to breakdowns of systems, are
often then followed by reorganization and breakthroughs to new
emerging, larger, more complex system levels. \

Rima Shaffer is a futurist, organization developer and executive coach,
Shaffer Synergislics. Inc.. Washington. D.C.. She may be contacted at
rimalshaffer@verizon. net.
Linda Groff is a professor of political science and future studies. Califor-
nia State University. Dominguez Hills, Carson, California. She may be con-
tacted at ljgrojf@csudh. edu.
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Complex Adaptive Systems and Futures Thinking L. Groff and R. Shaffer

All of the authors of the articles in this special issue are futurists.
Futurists have always looked at factors driving change, as well as
crises within systems that propel evolution forward. Writings from
wisdom cultures view reality as holistic and interrelated. In addition,
wisdom cultures tend to take a long view of reality. Contemporary
thinkers also look at phenomena through the lens of complexity and
systems thinking, because all aspects of life are interacting on global,
environmental, and extra-planetary system levels—^not just local and
national levels. Governments, trade, science, and economics are
viewed on larger system levels today, with more diversity and com-
plexity within them, due to various factors, including globalization
of new technologies, major societal changes, an evolution of con-
sciousness, and a number of different crises. Such crises indicate that
systems that once worked are no longer working well, implying that
solutions require new thinking and a reframing and reorganization of
policies on larger, more complex, global and planetary system levels.
Policy makers and decision makers are challenged to reframe prob-
lems and seek solutions from the perspective of larger system levels.

When systems are viewed as complex and emergent, linear
thinking no longer suffices; and solutions may include both technical
and materialistic/outer world variables and consciousness perspec-
tives and influences. Each of these special issues includes both
macro and micro, outer and inner reality perspectives—all from an
evolving systems perspective, so readers can come to their own con-
clusions on their importance and how they may interrelate.

The articles in this special issue of Futures Research Quarterly
will (1) look at systems and futures thinking from macro to micro
levels, (2) from technical to philosophical perspectives, (3) from
outer/materialistic to inner/consciousness worldviews and perspec-
tives, and (4) the interrelationships between these different levels.
We hope these articles will generate discussions amongst the au-
thors, and amongst futurists in general, and between the fields of
systems and futures thinking—about the changes and challenges, as
well as opportunities, confronting humanity and the world today.
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Teaching Systems Thinking

Peter Bishop

Systems thinking is a fundamental perspective of future studies.
Even calling it a "perspective" underestimates its importance. Some
even claim ihat it is the paradigm of futures studies. It is at least the
lens through which futurists view the world.

Systems thinking embodies some of the principles that lie at the
foundation of futures studies: ,

• Every entity (thing) is a system which consists of parts (sub-
systems) and which is also a part of larger systems—a
"holon" to use Arthur Koestler's term (1968).

• Every system and every part of a system is connected to
every other system, at least indirectly.

• Systems and parts of a system interact in ways that can pro-
duce surprising and counterintuitive resuhs.

• The tendency to produce unexpected results makes predict-
ing the outcome of systems' interaction difficult, if not im-
possible.

As a result, it is critical that futurists introduce students and oth-
ers to these principles if they are to approach the future in a sophisti-
cated and systematic fashion.

Unfortunately, teaching systems thinking is easier said than
done. The subject is obvious to those who understand it and opaque
to those who don't. Even those who don't get it might agree with
these principles, and not see the world that way. Those who do see
the world that way cannot understand why everyone does not.
Teaching systems therefore requires communication across a deep
paradigmatic boundary in a language that is quite foreign to the lis-
tener. That is very hard to do.

Chris Dede, now at Harvard, created the Systems Thinking
course at the University of Houston-Clear Lake in 1975. Chris is an

Peter Bishop associate professor, University of Houston; president. Strate-
gic Foresight and Development, Houston, Texas. He may be contacted at
pbishop@uh-edu.
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outstanding educational futurist and brilliant teacher; the course be-
came a tradition. He said that Using Systems Approaches (the name
of his course) was the hardest course he ever taught, and he was
right. I hope that this reflection might tempt others to travel this
journey themselves.

While the principles of systems thinking are embedded in most
ancient philosophies, the theory of systems thinking was first articu-
lated in the early 1930s by the biologist, Ludwig von Bertalannfy
(1976). Since then, a library of literature has developed around the
subject. Other notable contributors were Jay Forrester {Industrial
Dynamics, 1961), Russell Ackoff {On Purposeful Systems, 1972;
Redesigning the Future, 1974; Creating the Corporate Future,
1981), James Grier Miller (Living Systems, 1978), Karl Weick {The
Social Psychology of Organizing, 1979), C. West Churchman (The
Systems Approach, 1984), Peter Senge {The Fifth Discipline, 1990),
and now Ken Wilber {A Theory of Everything, 2000).

The practical application of systems theory began during World
War II in the work of two eminent scientists—Norbert Weiner and
John von Neumann. Weiner is credited with articulating the funda-
mentals of control theory, also called cybernetics, in which negative
feedback is applied to changes in a system to keep it within certain
limits. The common household thermostat is the most obvious ex-
ample. Control theory was the basis for the development of much
more complicated systems in the Postwar world—from interconti-
nental ballistic missiles and nuclear submarines to computers and the
Internet. Systems engineering has since emerged as a separate disci-
pline with a deep mathematical basis and universal application to all
machines.

Jay Forrester, also of MIT, was the first to apply control theory
to social systems. Forrester also invented the formal language of
causal models (also called influence diagrams) and systems dynam-
ics, which allowed the simulation of first-order differential equations
using simple difference equations. Forrester used these tools to de-
scribe the development of cities in his 1961 book Industrial Dynam-
ics. Dennis and Donella Meadows and Jörgen Rander also used sys-
tems dynamics in their famous Limits to Growth in 1973. Forrester
and his colleagues offered system dynamics to the public in the Ap-
ple lie program called Dynama, which Barry Richmond turned into
Stella and iThink for the Macintosh and which Ventana Systems
turned into Vensim for the Windows computers. Today high school
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Students (and probably some elementary students) can simulate quite
sophisticated systems using these simple tools. Forrester's tradition
became the inspiration for Peter Senge's groundbreaking book The
Fifth Discipline in 1991 and influenced John Sterman and others at
the MIT Systems Dynamics Group. Finally, the Systems Dynamics
Society is a well-known and prestigious society of researchers who
use these theories and tools today.

John von Neumann, Weiner's colleague, is also credited with
establishing a different branch of systems theory based on cellular
automata (CA), As opposed to cybernetic systems, in which vari-
ables are the components, von Neumann's systems consisted of in-
dependent agents (the CAs) whose actions depend on the conditions
in their immediate environment and on the actions of other CAs
close to them. What is now called complexity theory, or agent-based
modeling, took longer to develop, since complex systems cannot be
modeled using differential equations the way control systems can.
They must be simulated in a step-by-step fashion, and the computers
required to do any meaningful simulation did not become available
until the 1970s. At that time, John Conway invented the famous
Game of Life, a two-dimensional array of agents operating on very
simple rules that produced surprising and beautiful patterns. Stephen
Wolfram used a one-dimensional CA to investigate the various states
that an agent-based system could take in a famous article in 1982
which he later turned into his book A New Kind of Science. The
Santa Fe Institute was founded in 1984 to study complex adaptive
systems, now that powerful graphical workstations from Sun Micro-
systems were available. SFl also pioneered the development of net-
work theory, which became staple of many scientific and engineer-
ing disciphnes.

The abstract (and somewhat arcane) systems theory of the 1950s
has come to define our world and to influence the many technologies
we have created within it. Earth scientists use systems theory to de-
scribe the operation of the inanimate parts of our planet—the oceans,
the atmosphere, the land, and the energy that flows among them. Bi-
ologists use systems theory to describe living systems—organisms
and the ecologies they live in. Psychotherapists use systems theory to
describe the interactions among family members or small work
groups. Futurists use systems theory to describe larger human sys-
tems - communities, organizations, regions, nations and indeed the
whole of human society itself. Systems theory, then, is essential for
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understanding the worid and how it might develop and change in the
future.

Each course in the University of Houston futures curriculum be-
gins with a course generalization. The generalization is a single
statement that embodies the essential learning in that course. It is a
vision statement of sorts about what we want the student to learn.
The course generalization guides the selection and development of
the modules in the course, with each module elaborating and rein-
forcing the generalization.

The generalizations for many of the courses are obvious and
somewhat simplistic, but no generalization is as important as the one
for Systems Thinking.

"A SYSTEM'S BEHAVIOR IS A FUNCTION OF ITS
STRUCTURE."

Or as Peter Senge put it "Structure influences behavior." (The
Fifth Discipline. 1990) That simple statement contams the essence of
systems thinking, but first some definitions:

System:

Behavior:

Structure:

a set of parts that interact to produce observable ef-
fects (behaviors) outside the system
a change in (or the stability of) an externally observ-
able or measurable unit or quantity associated with
(or produced by) the system over time
the relationship of the system's parts (subsystems,
variables or entities) interacting with each other ac-
cording to fixed rules

In other words, a system's behavior is a function of the relation
and interaction of its parts—its structure. As such, this generalization
seems pretty obvious and therefore not too impressive, except for the
fact that it is not the most common explanation of phenomena in the
world. Two other explanations are more commonly advanced for
why things (human systems, in particular) behave the way they do:
the personal explanation and the external explanation.

The personal explanation claims that systems behave the way
they do because of the people in them. According to this theory,
people (such as leaders, managers, workers, suppliers, regulators,
customers, etc.) account for the system's behavior. Change the peo-
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pie in the system (by retraining, supervising, or replacing them), and
you will change the behavior of the system. "If we could only get rid
of ..., If the boss would only think.... If the employees would only
behave like.... If only they would do something, then everything
would be all right." Systems thinkers claim otherwise; they hold that
changing the people in a system rarely changes the behavior of the
system.

The U.S. Congress has been around for more than two centuries.
Tens of thousands of people have served over that time, yet the insti-
tution still seems to behave the same over time. Is it the people?
Clearly not. And one could say the same for business, schools,
churches, or families. The people in a system cannot explain the be-
havior of that system when that behavior persists long after those
people are gone.

Another popular explanation for a system's behavior is that
forces, external to and beyond the control of the system, cause it to
behave the way it does. Laws, regulations, the market, the physical
world are all used as reasons why the system behaves as it does. That
of course does not explain how some systems operating in those
same environments seem to behave differently. So some businesses
succeed in a heavily regulated environment while others do not. The
same can be said of almost any type of environment. Blaming exter-
nal events for trouble is common, but again systems thinkers do not
take that 'easy out' either.

People do make a difference and the environment does influence
behavior, but not nearly as much as most believe. The situation is
illustrated in the diagram below. While we acknowledge that a sys-
tem's structure does influence its behavior, we rarely use the struc-
ture to explain the behavior because it is "underwater"—invisible and
hard to see. People in the empirical West prefer to explain things
using tangible evidence (people and events) rather than the appar-
ently ethereal and largely invisible structure of the system (whatever
that is!). Systems thinking "drains the water from the pond" in order
see its structure and allow it to play its proper role in explaining the
system's behavior.

A course in systems thinking provides the understanding and the
tools to reveal the structure of a system and its effects on the sys-
tem's behavior. The course achieves this mission by reading what
others have said about systems, by reviewing cases of structural ex-
planations of system behavior, and by modeling and simulating sys-
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tems themselves. The ultimate objective is always to explain a sys-
tem's behavior in terms of its structure.

FIGURE 1 - CONCEPT OF SYSTEMS THINKING

SYSTEMS

The concept of system is so big that it is hard to think of some-
thing that is not a system. Some examples of living systems are cells,
organs, organisms, ecologies, families, organizations, communities,
societies, and even the global society. On the inorganic level, atoms,
molecules, crystals, oceans, atmospheres, solar systems, galaxies,
machines, circuits, utilities (water, electricity, telephone) and, of
course, the Internet are all systems.

Each of these entities has a number of things in common:
1. Each is made of parts.
2. The parts interact with each other.
3. The interaction of the parts produces behavior at an observ-

able level. (The patterned interaction of the parts is the struc-
ture.)

Understanding a system and its behavior begins with construct-
ing a model or representation of the system. Models come in various
types physical, graphical, mathematical, verbal, and so on. Each has
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its own use, and most systems can be modeled in many ways. The
model focuses on certain aspects of the system to explain the sys-
tem's behavior. The model is always a simplified representation of
the actual system because its simplicity demonstrates how the system
operates. An ecological model of a lake would include the species
but not the chemical bonds of the water molecules, because those are
not required to explain the system behavior.

A system boundary delineates what to include and what not to
include. What is left out is the system environment that part of the
rest of the universe that interacts with the system and influences its
behavior to some extent. In the long run, everything is connected to
everything else, so boundaries are arbitrary. The boundary of a sys-
tem is an analytical concept; it is not part of reality. Rather it is a
device created by the analyst to improve understanding.

Establishing boundaries is arbitrary because there is no one way
to defme a system's boundary. Nevertheless, there are useful bounda-
ries and useless ones. For example, Texarkana is one of the few
towns in the United States that has a state boundary (Texas and Ar-
kansas) running through it. That boundary is as arbitrary as any other
boundary. It is useful when considering matters of state law and
taxes that apply to its citizens. It would be harmful, however, to con-
sider the two parts of the town as separate communities since they
act as one system in every other way.

The rule for deciding a system's boundary optimizes two princi-
ples: 1) completeness—include all the parts in the model necessary
to explain the system behavior, and 2) parsimony—do not include
any more parts in the model than are absolutely necessary. The first
rule is obvious. If one leaves out an essential part of the system,
some of the behavior will not be explained. If one includes too many
parts, the model will become too complicated to understand. As
someone once said, "Replacing a system that is poorly understood
with a model that is poorly understood is no progress."

SYSTEM BEHAVIORS

The central question of systems thinking, "Why does the world
act the way it does?" is applied to one system at a time. The world is
a complieated place, and we do not understand the half of why things
are the way they are. Here are some examples that a class came up
with one year in Houston:
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• U.S. healthcare system, though the most advanced in the
world, does not take care of everyone.

• People don't accept alternative medical treatments despite
their proven successes.

• Welfare does not help those who need it the most.
• Although schools spend more money than they used to, stu-

dents are exhibiting lower skill levels than they used to.
• Slash-and-bum agriculture continues.
• Arabs and Israelis cannot resolve their differences.
• NASA has spent a fortune on organizational consultants, but

the culture remains the same.
• Politicians do not fulfill their campaign promises.

Not everyone would agree that all these statements are true. To
the extent that they are, they represent a list of curious behaviors of
the systems in our world. Systems that are designed to do one thing
(health care, education) seem to end up doing something else. As a
result, they do their intended mission poorly. Health care is really not
taking care of healthy people, but rather treating sick people. It
should be called sick care. We build roads, but traffic jams increase.
We want security, but end up building 10,000 nuclear missiles. How
do such things happen?

Take the experience of dieting. Most people believe that if they
eat less, they will lose weight. Why do the people who diet continue
to be the heaviest? They should be the lightest. Does anyone under-
stand why this happens?

SYSTEM STRUCTURE

The most common explanation for the fact that heavier people
usually don't benefit from dieting is that they lack will power—an
explanation rooted in the people themselves. If they would only eat
less, then they would lose weight. In fact, some people do eat less,
but most don't. Are those that don't eat less therefore to blame for
their overweight condition? Most people believe so.

The people themselves, however, have a different explanation.
They believe that something outside them forces them to eat, usually
identified as stress. That represents the second most popular explana-
tion for a system's behavior—something outside the system is respon-
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sible. Businesses blame regulators, regulators blame legislators, leg-
islators blame lobbyists, lobbyists blame regulators. Everyone has
some external explanation for their behavior. This explanation is
usually not adequate.

The final type of explanation is somewhat more accurate, but
still not sophisticated. It is the simple cause or linear explanation.
Einstein once said, 'To all the complicated problems in the world,
there is a simple solution, but it is always wrong." He appreciated
how complex and subtle the world is. Simple explanations fail to
capture complex reality. So obesity is caused by an eating disorder-
nice and simple, but hardly adequate. Corruption is caused by greed;
pornography by moral decline; poor educational performance by a
lack of family values. All nice and simple, but hardly explanations to
count on.

Take the solution of raising taxes to reduce the government defi-
cit. Government deficit is the result of revenue that is less than ex-
penditures. One way to solve the problem of deficits is to raise the
tax rate to produce revenue to equal the expenditures—nice, simple
straightforward. As many political leaders found out, that solution
may not work. They raise the tax rate, and the revenues go down.
They raise the tax rate again, and they revenue goes down again!
How to understand this system behavior? ',

Understanding begins by listing the parts of the system that pro-
duce the behavior:

Revenues
Expenditures
Deficit
Tax rate

Gross profit (pre-tax)
Net earnings (after-tax)
Dividends
Retained earnings

Adjusted gross income (pre-tax)
Net income (after-tax)
Living expenses
Savings

Investments
Productivity
Growth

An explanatory model of the system would point out that reve-
nues are produced from two sources: businesses and individuals.
Business tax rates apply to gross profits (business revenues less

Futures Research Quarterly • Summer 2008 ' 15



Teaching Systems Thinking P. Bishop

business expenses). The higher the tax rate the lower the net earnings
after taxes. With a fixed dividend, the lower the retained earnings
means the company has less to invest. The individual sector works
the same way. Tax rates apply to adjusted gross income (individual
income less deductions). The lower the gross income, the lower the
net income and, with fixed living expenses, the lower the savings
that would be used to buy stocks and bonds. Therefore, the higher
the tax rate, the lower the investments from businesses and individu-
als. Lower investments lead to lower productivity which in turns
leads to lower growth. Lower growth means lower profits for busi-
ness and lower incomes for individuals resulting in lower revenues
for the government. As a result, a higher tax rate leads to lower gov-
ernment revenues—just the opposite that one would expect.

The preceding paragraph is a verbal model of the government
revenue system designed to explain the unusual result that higher tax
rates may lead to lower revenues. That model would also explain
that under certain circumstances, lower tax rates might even lead to
higher revenues. That actually happened in the Kennedy administra-
tion in 1963. The Reagan administration tried the same thing in
1982, but it did not lead to lower deficits because government ex-
penditures (mostly military spending) increased at the same time. In
any case, the verhal model shows how it might happen. Most impor-
tantly, the explanation is 1) not due to any person or group of people
involved in the system, 2) not due to forces outside the system, and
3) not a simple explanation from just one cause. It is an explanation
based on the structure of the system; the interaction of its constituent
parts.

THE APPROACH

So if the objective is to leam the course generalization and be
able to apply it to explain system behaviors, how do we do that?

The first overriding consideration in designing this course is to
distinguish between the two types of system structures—cybernetic
and complex. As described above, cybernetic system theories and
models are based on control theory; complex system theories and
models are based on agents. Cybernetic models are macro, top-
down, describing the system as a whole. Complex models are micro,
bottom-up describing the actions of individual agents. Each of these
paradigms will be described in turn. The approach to learning each
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paradigm consists of the following elements:

i
• Instruction: reading, lecture, discussion
• Demonstration: exercises, simulation
• Activity: practice, feedback
• Assessment: tests, products
The first step is, of course, instruction—reading and lecturing on

systems theory and the ways to apply it in real situations. Systems
thinking is a skill and some instruction is necessary, but the primary
strategy is practice and feedback.

CYBERNETIC SYSTEMS

Literature on cybernetic systems theory
The best introduction to systems thinking is contained in two

short books by Draper Kauffman titled (cleverly) Systems I and Sys-
tems II. Kauffman's books are deceptively simple. They might seem
beneath a university course, but they contain all the important ele-
ments of systems theory in an engaging and easily understood man-
ner. Who says that learning can't be fun, too?

The classic text in systems thinking is, of course, Peter Senge's
Fifth Discipline. Senge not only introduces Forrester's insights about
causal modeling, but he provides the rationale for why study systems
on the very first page.

From a very early age, we are taught to break apart problems, to
fragment the world. This apparently makes complex tasks and sub-
jects more manageable, but we pay a hidden, enormous price. We
can no longer see the consequences of our actions; we lose our in-
trinsic sense of connection a larger whole.

Part of that socialization is a model of how the world works,
something cognitive psychologists call a ''schema". Futurists point
out that we also have schémas for the larger systems in the world-
why sales go up or down, why crime occurs in certain neighbor-
hoods, why wars erupt. Some of those schémas are well-supported
by scientific evidence, such as the operation of the economy; others
are little more than common sense and traditional wisdom.

Not everyone has the same schema or model for the same phe-
nomena. Many schémas are deeply ingrained cultural constructs.
These constructs become rote, unconscious, and unquestioned. It is
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only when we interact with people from different cultures or life-
styles that we realize that the world is made of all kinds of schémas,
some apparently quite bizarre.

We also have different schémas or models for how the large sys-
tems in the world operate—the physical, biological, and human sys-
tems of the planet. For instance, some will disagree on whether na-
ture is there just for human to use as they wish or whether it has in-
dependent status and value that must be respected. Schema guide
decisions and actions toward nature, such as how people vote, and
what teachers teach, what philanthropists donate.

Part of systems thinking involves surfacing the schémas and
mental models that we and others use to understand and explain the
world. The behaviors in that world arc apparent, but the structures
that produced those behaviors are not. So we need a tool, an X-ray
machine of sorts, to expose those tacit structures. Once exposed, we
can examine them, test them, discuss them, and ultimately come to
understand how the world works in a conscious and explicit way not
only for ourselves, but in communication and dialogue with others.
Onee we have revealed the mental models that we and others use, we
can compare them and perhaps agree on how the world works or at
least understand the different assumptions that each person uses to
make sense of the world. One cannot discuss what one cannot say or
show. Systems thinking provide the means to identify our deepest
assumptions about the world so we can choose which ones we want
to use.

DEMONSTRATION OF CYBERNETIC SYSTEMS THEORY

One of the most memorable parts of this course is the participa-
tion in simulation that concretely shows that a system's behavior
really is a function of its structure.

The two most famous simulations are The Beer Game and Fish
Banks.

The Beer Game is written up in Senge's The Fifth Discipline. It
simulates a four-station supply chain in which retailers, distributors,
wholesalers and manufacturers order and receive (or produce) ship-
ments of beer based on their expected demand. Not to give away the
plot, but the behavior at every station is almost always shortage fol-
lowed by a huge oversupply because of the built-in delays in the sys-
tem. Even when participants have heard or read about The Beer
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Game, they still exhibit the same behavior! The behavior is a fiinc-
tion of the structure, not of the participants or their knowledge.

The Systems Dynamics Society sells the materials for the board game
(http://www.albany.edu/cpr/sds/Beer.htm). MIT (http://beergame. Mit
.edu/) and MA Systems (www.masystem.com/beergame) offer online
versions, and MIT also offers a simulator that plays the game auto-
matically based on input parameters (http://web.niit.edu/jsterman
/www/SDG/MFS/simplebeer.html).

Fish Banks is a simulation now distributed through the Sustain-
ahility Institute, a successor to the Institute for Policy and Social
Science Research at the University of New Hampshire—the same
people who produced Limits to Growth. The simulation consists of
teams fishing in the same water, and produces the same behavior as
Limits—overshoot and collapse. Even when the participants know
about this scenario, the system usually produces the same behavior.
In this case, the software is essential since it calculates and keeps
track of all the variables in the system (http://www.sustainer.org
tools_resources/games.html).

Many other activities and simulations are contained in the Sys-
tems Thinking Playbook (http://www.sustainer.org/tools_resources
/games.html). Nothing is more powerful than demonstrating the
power of the course generalization, particularly when the students
themselves participate in the system and produce the behavior them-
selves.

MODELING CYBERNETIC SYSTEMS

Systems thinking is primarily a skill, not just an intellectual pur-
suit. Our professional program at Houston focuses on honing
skills—by constructing models. A model is a representation of re-
ality in some fonn. AU types of models exist, including:

• Physical (scale) models
• Mathematical models (equations)
• Computer models (programs) '
• Geographical models (maps)
• Process models (steps)

A model is like the reality, but it is not the reality. The map is
not the territory. A model extracts only a limited number of parts of
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the reality for representation. The model focuses on those parts for
better understandmg and, in dynamic models, better manipulation in
ways that cannot be done with the real system for both practical or
ethical reasons.

The systems-thinking course distinguishes four types of models
used to articulate the mental models of a system's structure - verbal,
formal, simulated, validated.

Verbal models use ordinary language to explain the system's
behavior using the system's structure. We really don't need any in-
struction on how to explain behaviors using language because we do
it all the time. Language is highly fiexible, but flexibility comes with
a price. Language is also ambiguous. Different people can under-
stand different things even when using the exact same words. So
language is not a perfect way to articulate a mental model. In fact,
there is no perfect way. Different types of models are useful for dif-
ferent purposes.

Formal models solve that problem, to some extent, because they
use a formal language to describe the system structure in a precise
and unambiguous way. Mathematics is a formal language, and it is
used to model most systems in science and engineering. In social
systems, however, we need a language that is somewhat more fiexi-
ble and forgiving, so we tum to Forrester's causal models, also
called influence diagrams. Causal models are composed of three
types of entities:

• Variables—any quantity that can vary
• Links—the association of one variable with another
• Loops—circular sets of variables and links

Figure 2 shows a simple reinforcing, positive feedback loop that
describes wage-based inflation as a function of the structure of the
manufacturing system.

Figure 3 shows a simple balancing, negative feedback loop that
describes adjustments to the price of gasoline as a function of the
structure of the market.

The purpose is to show that a formal language is a way of de-
scribing mental models and systems structures more precisely than
informal language, Causal models also take the individuals and the
events out of the explanation. Any person in these systems is as-
sumed to act in the same way. That is not exactly the case, of course.
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Some manufacturers might not increase their wages to meet the cost
of living, or they might move their factories overseas to prevent
wage increases. Formal models do not ignore the possibility that
people and events do influence system behaviors, but they do focus
on the system structure as the explanation, since it is so rarely identi-
fied as such. I

FIGURE 2 - REINFORCING (POSITIVE FEEDBACK) LOOP
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FIGURE 3 - BALANCING (NEGATIVE FEEDBACK) LOOP
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We use Virginia Anderson and Lauren Johnson's Systems Think-
ing Basics as the primary text for teaching causal modeling. Their
publisher, Pegasus Communications, is also an excellent source for
other materials on causal modeling.

Formal models solve the problem of the ambiguity of language,
but they do not directly link the system behavior and its structure.
Causal models are pictures, static pictures. We can say, "When A
goes up, B goes up," but the picture does not do that itself The next
level of modeling actually produces behaviors as output.

Simulated models produce behaviors using a computer program.
Any programming language can be used to simulate a system since
they all produce output (values of a variable over time), and most
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depict those values in graphical form as well. The structure of a sys-
tem can be modeled using the relationships of variables, and the be-
havior of the system is the numerical or graphical output of one or
more of those variables. The specific target to be explained; is the
behavior of a system as manifested in the changes of a variable over
time, usually depicted in graphical form. So the model of a system
explains why a particular variable acts the way it does, and that ac-
tion is shown as a graph of the value ofthat variable over time.

Depicting the behavior of a system as the graph of a variable
over time gives one the ability to perform experiments. We first
identify the behavior of the system to be explained (in the form of a
graph), model the system structure, simulate its operation over time
using a computer program, produce the output of the variable to be
explained in graphical form, and compare the first graph with the
second. If they do not match, we know that we have not modeled the
system correctly. If they do match, we have evidence that we might
have modeled the system correctly.

We do not know that we have modeled the system correctly for
sure because many models can produce the same behavior. We know
that we have one of them, but only one. We can never be sure that it
is the one that produced the behavior in the world. That is an as-
sumption, and a pretty good one, barring evidence that another
model is better, but it will always remain an assumption. Since the
structure of the system is fundamentally unobservable, we can never
know for sure that we have the right one. But one or models that
produce the targeted behavior is better than none.

Jay Forrester developed another formal language, called stock-
flow or systems dynamics, for simulating systems. Stock-flow mod-
els contain three types of variables:

• Stocks—variables that retain their value over time. They are
like tanks that hold water.

• Flows—variables that adjust the value of stocks, either in-
creasing (inflows) or decreasing (outflows) them. They are
like the faucets and drains connected to the tank.

• Auxiliaries—variables that hold parameters or perform cal-
culations during the simulation.

Figure 4 contains a classic stock-flow model of population change
(absent immigration).

22 Futures Research Quarteriy • Summer 2008



Teaching Systems Thinking p. Bishop

EIGURE 4 - STOCK ELOW MODEL

Birth rate

In this model, the number of individuals in the Population is the
stock; it persists over time. Individuals enter the population by birth
and leave the population by death (the flows). The rates of those
flows are held in the birth and death rates (the auxiliaries). The ac-
tual number of births and deaths in any time period is the size of the
Population times the respective rate.

This model can exhibit three different behaviors, depending on
the relative size of the birth and death rates. The Population is stable
(constant) when the rates are equal; the Population increases when
the birth rate is higher than the death rate, and it declines when the
birth rate is lower. Figure 5 shows the graph of Population increase
from 1,000 to about 1,800 when the birth rate is 40 per 1000 and the
death rate is 10 per 1000, as exists in many developing countries.

The purpose is not to teach systems dynamics or stock-flow
models but to show that simulated models are useful in understand-
ing systems thinking. We can verbally state how a systems structure
explains a behavior using ordinary language and we can draw that
structure using a causal model. However, there is no substitute for
actually producing that behavior with a modeling program and com-
paring the output to the expectation. That is the real test of systems
thinking.

At the same time, modeling is no easy task. Aside from getting
the structure correct, it also involves finding the right formula for the
equations and the right value for the parameters contained in the aux-
iliaries to produce a behavior that looks like the system's behavior in
the world. So some knowledge of how variables in different equa-
tions behave and a lot of fiddling with parameters is necessary to get
the behavior one wants. The reason for introducing simulation into
an introductory course in systems thinking is 1) to demonstrate how
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simulated models work, 2) to examine the assumptions necessary in
modeling, and 3) to show how the structure (the model) actually
produces the behavior (the graph).

FIGURE 5 - POPULATION INCREASE
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Numerous resources exist to leam systems dynamics. The best
discursive introduction is probably Michael Radzicki's Introduction
to System Dynamics, produced for the Department of Energy
(http://www.systemdynamics.org/DL-IntroSysDyn/index.html). Jay
Forrester's group has also produced a set of excellent tutorials called
The Road Map. available at http://sysdyn.clexchange.org/road-
maps/rm-toc.html. The definitive text for systems dynamics is
probably John Sterman's Business Dynamics (2000), but it is expen-
sive.

Forrester originally programmed his stock-flow models on a
computer program called Dynamo (for Dynamic Models). Barry
Richmond, founder of High Performance Systems (now isee), devel-
oped Stella, a modeling program for the Apple Macintosh
(http ://www. iseesyst ems. com/soft wares/Education/St el la S o ft ware, as
px). Stella also runs on Windows, but most use Vensim from Ven-
tana Systems (http://www.vensim.com/download.htmi) because it is
free for educators and students.

The purpose of simulation is to produce the shape of the system
behavior, not the actual values. While real values are the output of
the model, they are not necessarily the values that the variable would
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have in the world. Shapes are usually enough to understand and ex-
plain the behavior of a system. For prediction, we need to know, not
only the shape, but also the actual values of those variables. For that,
we tum to the final level of system modeling.

Validated or calibrated models produce not just the shape of the
behavior, but also the values themselves. These models are "vali-
dated'" because they are fitted to some historical time series to be
sure that the structure, the parameters and the initial conditions of the
model are correct before extrapolating the model into the nature.
Validated models go well beyond an introductory course in systems
thinking. They are used extensively in physical science (such as
modeling the effects of CO2 and the other greenhouse bases in the
global atmosphere) and economics (such as forecasting the growth of
the economy over the next year).

The most famous validated systems model was called World3 in
Limits to Growth (1973). Published just months before the OPEC oil
embargo, the model predicted long-term scenarios of overshoot and
collapse for the world's economy. The original and the two subse-
quent revisions (Beyond the Limits and The Limits to Growth: The
30-year Update) make fascinating reading, but students in this
course can get the essence from a small pamphlet entitled A Synop-
sis: The Limits to Growth (http://www.sustainer.org/tools_resources
/games.html).

COMPLEX ADAPTIVE SYSTEMS

Complex adaptive systems (CAS), the term now used for von
Neumann's approach to system structure, are based on cellular
automata and independent agents. CAS was in its infancy in the
1970s when the UH-Clear Lake course was established. It took the
development of more powerful computers before any meaningful
agent-based models could be simulated. Even today, the materials,
the demonstrations and the tools available to most people are many
years behind what they are in cybernetic systems. CAS is basically
where cybernetic systems modeling was in the 1970s—before
Stelia/Vensim, The Fifth Discipline, and The Road Map.

Nevertheless, a reduced treatment of CAS was introduced to the
Houston systems course in the late 1990s. Today, about 20% of the
course is devoted to CAS, because it is essential to understanding
that a system's behavior is a function of its structure. ,

Futures Research Quarterly • Summer 2008 25



Teaching Systems Thinking P. Bishop

INSTRUCTION ON CAS THEORY

The first objective of this part of the course is to clear up the confu-
sion surrounding recently-developed terms associated with the no-
tion of complex adaptive systems. Coincidentally, all of them begin
with "C"—chaos, catastrophe, criticality, and complexity. And re-
grettably, all have connotations in ordinary language that have little
or no relation to their actual meaning in systems thinking. As a re-
sult, they are often thought to be other than they are.

Chaos is the first and most widely used term associated with
CAS. It often appears with complexity, as in "chaos and complex-
ity," just like "ham and eggs" or "peanut butter and jelly." It is simi-
lar to complexity since 1) it does begin with "C," 2) Chaos theory
was devised after World War II, and 3) it is a type of system behav-
ior that is unpredictable in the medium-term. But that is where the
similarity ends.
Chaos is one of three types of behaviors that a system can exhibit,
the first three of which are:

• Fixed—a static equilibrium state (e.g., the bottom of the
ocean)

• Periodic—oscillations between two or more fixed states
(e.g., the ocean tides)

• Chaotic—movement from one state to another, but never re-
turning to any previous state (e.g., the surf crashing on
rocks)

Chaotic phenomena were first identified by Henri Poincare in
trying to explain the orbit of Neptune. Though considered the "Fa-
ther of chaos theory," Poincare never did explain that behavior be-
cause it was chaotic.

The practical application of chaos theory was developed by Ed-
ward Lorenz, a meteorologist, in 1963. Lorenz was running a
weather simulation that he had run before, but this time he inter-
rupted the simulation and restarted it using the last numbers on the
printout. He noticed, to his surprise, that the simulation produced
entirely different results after the first few time periods compared to
the first run. He thought he had entered one of the numbers incor-
rectly, but he had not. It turned out that he had re-entered the num-
bers using the first six digits that the computer was printing out, but
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the computer was actually calculating the numbers using ten digits
internally. So the numbers on the restarted run were too small by less
than 0.0001%; yet that incredibly small difference produced a sig-
nificant difference in a relatively short time.

Prior to this discovery, there were thought to be only two types
of systems - deterministic and stochastic. First developed by Galileo,
Kepler, and Renaissance scientists and later perfected by Newton,
deterministic systems acted according to fixed laws, expressed as
mathematical equations. They could be used to predict the future
state of the system within a fairly narrow range, leading Enlighten-
ment philosophers to believe that we could know the future. Before
that, however, some French mathematicians identified probability
theory in the study of a game of chance. Stochastic systems, as they
came to be called, are systems whose values are independent of each
other. They form a distribution of possible outcomes, each with its
own probability, but no one outcome could be predicted from the
previous data or from the overall distribution. So detenninistic sys-
tems were predictable; stochastic systems were not.

Lorenz discovered a third type of behavior, a deterministic sys-
tem (a computer program) that was unpredictable due to its "sensi-
tivity to initial conditions." ki other words, the system is sensitive to
the incredibly small difference in the initial conditions. And those
differences rapidly build up to create large differences in output.

Given the same initial conditions in a computer simulation, the
system will behave exactly the same way for as long as you run the
simulation. In the real world, however, it is impossible to measure
the initial conditions with infinite precision. There is always some
measurement "error," some difference between the measure and the
reality. It is that difference that builds up to produce a measurably
different behavior after a short time.

Chaos behavior is often confused with stochastic behavior be-
cause they are both unpredictable. People think that chaotic behavior
is disordered and random, when things get out of control, when noth-
ing makes sense. "All chaos breaks out!" Chaos is not disordered or
random; it is deterministic. One can predict the very next state with
mathematical precision. One could even predict all fiiture states if
one knew the initial conditions exactly, but that is not possible.
Those quite minor differences in the initial conditions produce
measurable differences after a short while.

And, unlike stochastic systems, no system is inherently chaotic.
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The weather is the best example of a system that displays chaotic
behavior. Predicting the weather from one hour to the next is not
very hard, more difficuh for the next day, and just about impossible
for the next week or two. Just three well-known equations describe
the behavior of a weather system using only three well-understood
variables—temperature, pressure, and humidity. Weather in the world
is chaotic (deterministic but unpredictable), but the "weather" in a
building could be stable or oscillating. There are no inherently cha-
otic systems; there are only systems that have the potential of exhib-
iting chaotic behavior.

These three types of system behaviors (fixed, periodic and cha-
otic) can be produced in the same system depending on the choice of
parameters. Stephen Langton at SFI depicted these states in his
"football" image.

EIGURE 7 - THREE TYPES OE SYSTEMS BEHAVIOR

Certain human systems are thought to have chaotic behaviors
although we do not have the equations to describe them. Markets of
all types, especially stock and commodity markets, are thought to be
chaotic.

The occurrence of chaos (in the mathematical sense) is an impor-
tant part of systems thinking because it gives us reason to distrust
predictions of future system behavior. Some of those predictions
might come about, but we cannot tell which ones. If human systems
are predominantly chaotic, then the results of intervening in those
systems are inherently unpredictable. That does not mean that we
should not act on those systems. Rather it means that when we do
act, we should do so with caution and prudence lest we produce
harmful effects that we did not expect or intend.
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Stephen Wolfram's one-dimensional CAS models also produced
a fourth type of behavior including interesting, even engaging, pat-
terns that lasted for only a short time. They are not mathematically
equivalent to the first three because they are only reproducible in
CAS simulations. He labeled these behaviors "complex." Complex
behaviors lie in a shadowy region between the periodic and the cha-
otic. Chris Langton from SFl called that region the "edge of chaos,"
another unfortunate, Madison Avenue label. That region, however,
does contain some unique properties, most importantly a balance
between order and disorder—enough order to keep the system to-
gether, and enough disorder to allow change and adaptation. For that
reason, most believe that that behavior describes living systems, in-
cluding social systems, very well..

FIGURE 8 - FOUR TYPES OF SYSTEMS BEHAVIOR

Before complexity, however, the star of the show, we have to
stop by two other "C" words—catastrophe and criticality, which de-
scribe a different type of behavior from the ones considered so far.

Catastrophe and criticality are behaviors that shift suddenly from
one stable state to another. Continuous behavior is smooth; it does
not jump; all the points lie along a line. Discontinuities exist, how-
ever, in mathematics and in nature, and catastrophe theory and criti-
cality describe those behaviors.

A simple example of discontinuity is a bottle that is stable sitting
on its bottom. One can even push the top gently to one side and the
bottle will return to an upright position, as long as it is not pushed
too far. That range of variation in the vertical orientation of the bottle
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is called a basin of attraction. The image is that of a marble rolling
around on a surface consisting of a number of bowls or depressions.
If we tilt the surface, the marble rolls around in its bowl and returns
to the bottom when we stop. But if we tilt the surface too much, the
marble leaves the first bowl by going over a ridge and enters another
in which it will stay. That is a discontinuous change.

Catastrophe theory was developed by Rene Thom to describe
certain types of discontinuous change. The mathematics is quite
complicated and the applications quite narrow, so few people actu-
ally learn and use the theory today. Wikipedia actually has a good
description of Thom's catastrophe theory (http://en.wikipedia.org/
wiki/Catastrophe_theory).

Criticality, on the other hand, is a common way of describing
discontinuous behavior. The image here is "the straw that broke the
camel's back." One piece of straw cannot do that, but when added
one piece at a time, sooner or later the camel's back will fail, due to
the addition of one piece of straw. The more common analogy is
adding sand to a sand pile, one grain at a time. A sand pile is a cone
whose sides form an angle that depends on the sand's viscosity
(stickiness). Adding one grain of sand at a time allows the pile to
grow beyond its natural angle, but only for a while. Sooner or later,
one more grain will cause the pile to collapse in a little avalanche
and return to the natural angle.

While neither of these models is worth covering in-depth in a
course in systems thinking, it is worth mentioning because not all
system behavior is continuous. Tipping points do exist, after which
the system behavior changes dramatically. Examples of discontinu-
ous change abound in physics, chemistry, biology, and in all of the
social sciences:

• Anthropology—societal collapse
• Psychology—conversion
• Economics—asset bubbles bursting
• Political Science—revolution
• Sociology—white flight

The best book on criticality is Per Bak's How Nature Works.
Bak and his coauthoi^ introduced the concept in a 1988 article "Self-
organized criticality" in Physical Review.

All of these terms are examples of a broader category of behav-
iors called non-linear dynamics. A system is linear when its output
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(behavior) is proportional to its input. The classic linear equation is y
= kx, a straight line on a graph. One application is the relation of the
force pulling on a spring to the distance the spring travels, "k" is the
spring constant—larger for looser springs, smaller for tighter ones.
The point is that doubling the force will double the distance; halving
the force will halve the distance. The output is proportional to the
input. It describes a linear system.

A nonlinear system occurs when the output is not proportional to
the input. Technically, any curved line is nonlinear. So compound
interest, which grows exponentially, is not linear because one year's
interest late in the series returns more than one year's interest earlier
in the series.

The importance of recognizing nonlinear behavior in systems
thinking is that we are often surprised at nonlinear behavior, even
though we can calculate the future of many of those systems exactly.
Linear behavior seems somehow built-in and easy to imagine. When
asked to draw a trend, most people will draw a line-—equal amounts
of change in equal time periods. On the other hand, exponential in-
crease, diminishing returns, oscillation, and overshoot and collapse
all seem harder to imagine and therefore more surprising when they
do occur. And discontinuous change, the fundamental shift from one
state to another, seems even harder.

It is more strange that nonlinear behavior is hard to imagine and
expect because some would say that all change is nonlinear. In other
words, change does not happen in a linear way. That point was made
by Story Musgrave, a famous NASA astronaut in the Shuttle era,
when he said that all the straight lines he could see on the Earth from
space were man-made—contrails, ship wakes, roads, pipelines. Even
the famous border between Israel and the Sinai desert is a straight
line—green to the East and brown to the West. So with change. All
systems behaviors are nonlinear. Getting used to that fact is one of
the most important skills in systems thinking.

A complex system is one that consists of agents acting inde-
pendently according to often simple rules based only on information
from their local environment. Given that definition, complex systems
are quite different from the cybernetic systems in classical systems
thinking. The complex perspective takes the ground-level view of
the individual agent; the cybernetic perspective takes the global view
of the whole system.
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TABLE 1 - CYBERNETIC AND COMPLEX SYSTEMS

Cybernetic
Macro behavior
Top down
Rational and intelligible
Direct causal relations
Direct feedback
Explanation and prediction
Possibility of control
Model of mechanical systems

Complex
Micro behavior
Bottom up
un intelligible, unpredictable
No direct causality
Reciprocal feedback
Explanation but not prediction
Surprising, creative, innovative
Model of living ecologies

At the same time, global patterns do emerge from local interac-
tions. These patterns are called emergent because they emerge from
the untold number of interactions that agents have with each other.
There is no master control, no blueprint, and no overall rule book.
Each agent acts according to its own rule book, yet order and pattern
emerge nevertheless.

The clearest examples are biological organisms, which are fun-
damentally complex systems. Each cell is an agent acting on infor-
mation in its local environment. Some cells, like axons, are long, so
they transmit electrical impulses for relatively long distances, but all
the inputs and the outputs, even of axons, are just local to that cell.
Some organs send information to distant cells by releasing honnones
or enzymes, but the distant cell only receives that information in its
local environment. We think of our bodies as machines, designed
and organized for life. But we can think of them just as readily as a
colony of agents cooperating to perform that same function. The lat-
ter seems even more miraculous than the former.

Order arises even though there is no overall blueprint and no
master control. In The Ghost in the Machine (1968). Arthur Koestler
noted how wondrous it was that every person in Manhattan ate eve-
iyday even though the system that delivered that food (to all the
homes, stories, restaurants, carts, etc.) was not plamied or designed
by anyone. It was an emergent property of the millions of interac-
tions that constituted the food system ofthat city.

Most, though not all, complex systems exhibit emergence. And
the emergent patterns cannot be explained or predicted from knowl-
edge of the agents and their rules. Future emergent patterns are un-
predictable, they may even be creative, generating new patterns that
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persist overtime. The development of consciousness, the appearance
of different species, and even life itself was an unpredictable emer-
gent pattern based on the interaction of independent agents. Emer-
gence is another reason to be humble and cautious when trying to
understand, much less predict, the future of complex adaptive sys-
tems. They can easily surprise us.

The text usually used to investigate agent-based systems is Har-
nessing Complexity by Robert Axelrod and Michael Cohen. But a
number of other excellent books on this subject are also available.
Two histories of the development of complexity science are Roger
Lewin's Complexity: Life at the Edge of Chaos and Mitchell
Waldrop's Complexity: The Emerging Science at the Edge of Order
and Chaos. They cover the same ground, but both have their own
interesting stories and anecdotes about the characters that developed
this field. And Stephen Levy's Artificial Life is another excellent
treatment of the development of this field. John Holland is probably
the best known theoretician of complex adaptive systems, genetic
algorithms and artificial life so any of his books are always excel-
lent, including his three relatively non-technical introductions—
Adaptation in Natural and Artificial Systems, Emergence, and Hid-
den Order.

DEMONSTRATION OE CHAOS AND COMPLEXITY

The demonstrations of chaotic and complex behaviors are best done
with simple computer programs that show these behaviors quite dra-
matically.

For chaotic behavior, the most complete set of computer simula-
tions is from Rudy Rucker and is called The Chaos Game http://
www.cs.sjsu.edu/faculty/mcker/chaos.htm. It runs a number of chaos
and fractal routines that are quite amazing.

The Chaos Game with the magnets is also an interesting visual
representation of chaotic behavior. Another even more dramatic ex-
ample is the Waterwheel Lab, produced by Fritz Gasmann at the
Paul Scherrer Institute in Switzeriand http://people.web.psi.eh/
gassmann/waterwheel/WaterwheelLab.html. It's an animation of the
chaotic behavior that results from a constant supply of water to a
waterwheel.

Jos Thijssen, a professor of computational physics at Delft Uni-
versity of Technology in the Netherlands, provides a simulation of
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self-organized criticality at http://www.tn.tudelft.nl/tn/People/Staff
/Thijssen/sandexpl.html.

And finally, many have provided simulations of complex adap-
tive systems themselves, the most famous being John Conway's
Game of Life. The Game of Life is a two-dimensional grid of cells
each of which can assume two states—on or off—in successive gen-
erations. A cell tums on if three of its eight neighboring cells are on,
and they stay on if two or three of its eight neighbors are on. Other-
wise, it tums off. Simple rules, but complex patterns emerge. Some
of those patterns and a list of the more popular programs can be
found at http://en.wikipedia.org/wiki/Conway's_Game_of_Life. And
Mirek Wojtowicz has assembled an amazing gallery of all types of
cellular automata at Mirek's Celebration (http://www.Mirekwcom
/ca /index.html).

Hundreds of programs demonstrate CAS behaviors. Two long
lists are at Major Complex Systems Software from the Swarm De-
velopment Group http://oasis-edu.com/Oasis/synergie/accueil/soft
.htm and the Artificial Life Section of the DMOZ Open Directory
Project http://www.dmoz.org/Computers/Artificial_Life/. Some of
my favorites are Boids by Craig Reynolds http://www.red3d.com
/cwr/boids/ and Microants by Stephen Wright (http://www. cal-
resco.org/sos/mants21.zip). Stephen Prata's Artificial Life Playhouse
can be purchased second hand http://www.alibris.com/search/books/
It contains a number of genetic algorithms, including WordEvol
http://www j mu.edu/geologyevolutionarysytems/programs/wordevolexp.pdi'.

MODELING CAS

Modeling programs for CAS have also existed for a long time.
They are called event modeling programs because they program a
series of events, like cars arriving at an intersection or products mov-
ing down a manufacturing line. The most highly developed agent-
based modeling language for teaching systems thinking is NetLogo
from the Center for Connected Learning (CCL) at Northwestern
University http://ccl.northwestem.edu/netlogo/. NetLogo, like Star-
Logo offered previously by MIT http://education.mit. edu/starlogo,
is a modeling language based on Logo, a programming language
developed by Seymour Papert in the 1960s. (Papert played the same
role in the development of agent-based modeling that Forrester
played in cybernetic modeling.) Logo is language that controls a
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"turtle" on the screen that can move and draw lines. It is a rich and
exciting programming environment.

StarLogo and NetLogo use the turtle concept, but rather than the
program controlling one turtle, it controls many—^each turtle being
an agent in the simulation. Rather than programming the agents and
their environment, MIT and Northwestern offer ready-to-use simula-
tions that illustrate most of the important system behaviors and struc-
tures that one would like to investigate in a course like this. One can
run some of these simulations right from a browser http://
ccl.northwestem.edu/netlogo/models/ or download the NetLogo pro-
gram and associated files http://cci.northwestem.edu/netlogo/download
.shtml and run them locally.

The CCL also has developed two variations of agent-based mod-
eling, called Participatory Simulations (http ://ccl.northwestern,
edu/ps/) and Integrated Simulation and Modeling Environment
(http://ccl.northwestem.edu/isme/) respectively. Both are server-
based applications running the HubNet version of NetLogo
(http://ccl.northwestem.edu/netlogo/hubnet.html).

Participatory Simulations allow students to interact with each
other and with computer controlled agents using computers or Tl
graphing calculators. One of the simulations lets students control the
traffic lights in a city grid to see how they can increase the flow of
traffle in the grid.

The Integrated Simulation and Modeling Environment is another
project that uses the HubNet application. The project's premise is
very much the same as this course—-that there are two paradigms of
systems modeling today, cybemetic (or what they call aggregate)
and agent-based.

These two forms of reasoning are very powerful ways of making
sense of complexity in the world—yet, the communities who prac-
tice them and the literature describing them are largely separate and
distinct. The aggregate and agent-based modeling tools themselves
are deployed by different communities—each community focused on
its tool and attendant form of reasoning. We believe that at both the
cognitive level and the tool level the time has come for a synthesis of
these two approaches. Accordingly, we explore how the two forms
of reasoning complement each other in making sense of complexity
and change—"Overview and Rationale," Integrated Simulation and
Modeling Environment, The Center for Connected Leaming, North-
westem University (http://ccl.northwestem.edu/isme /purpose.html)
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Perhaps someday we will be able to teach systems thinking in an
integrated manner.

CONCLUSION

This article has described systems thinking as taught at the Uni-
versity of Houston. As noted at the outset, the course generalization
is the heart of this course.

A SYSTEM'S BEHAVIOR IS A FUNCTION OF ITS
STRUCTURE

We explored the meaning of those terms (system, behavior, and
structure), described the behavior in the form of graphs of key vari-
ables over time and modeled the structure using the cybernetic and
CAS paradigms. The course teaches systems thinking with demon-
strations and practice, as well as instruction to hone students systems
thinking skills.

The major tenets include:

• Every thing is a system consisting of parts that is itself part
of larger systems.

• Every system and every part is connected to every other sys-
tem, at least indirectly.

• Systems and parts of a system interact in ways that can pro-
duce surprising and counter-intuitive results.

• The tendency to produce unexpected results makes predict-
ing the outcome of systems' interaction difficult, if not im-
possible.

And once you see the world that way, you cannot see it any other
way. The process of acquiring a systems perspective is irreversible.
Once done, it's that way forever.
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